

Welcome to boolrule’s documentation

boolrule is a simpe boolean expression evaluation engine.

boolrule was built by the team at tails.com [https://tails.com] to evaluate conditional edges
between nodes in a graph-like structure, though we’ve found numerous uses for
it since.

Contents:

	boolrule

	Installation

	Usage

	boolrule API

	Writing boolean expressions

	Contributing

	Credits

	History

Indices and tables

	Index

	Module Index

	Search Page

boolrule

[image: _images/boolrule.svg]
 [https://pypi.python.org/pypi/boolrule][image: _images/boolrule1.svg]
 [https://travis-ci.org/tailsdotcom/boolrule][image: Documentation Status]
 [https://boolrule.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/tailsdotcom/boolrule/]Simple boolean expression evaluation engine.

	Free software: MIT license

	Documentation: https://boolrule.readthedocs.io.

Features

Compare simple boolean statements:

>>> rule = BoolRule('5 > 3')
>>> rule.test()
True
>>> rule = BoolRule('5 < 3')
>>> rule.test()
False

Evaluate boolean statements against a context dict:

>>> can_buy_beer = BoolRule('user.age_years >= 18')
>>> can_buy_beer.test({'user':{'age_years': 12}})
False
>>> can_buy_beer.test({'user':{'age_years': 20}})
True

Combine conditions with and and or operators to produce complex expressions:

>>> is_hipster = BoolRule('address.postcode.outcode in ("E1","E2") or user.has_beard = true')
>>> address = {
>>> 'postcode': {
>>> 'outcode': 'E1'
>>> }
>>> }
>>> is_hipster.test({'has_beard': False, 'address': address})
True

Credits

Made possible by the excellent pyparsing [http://pyparsing.wikispaces.com/] library.

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install boolrule, run this command in your terminal:

$ pip install boolrule

This is the preferred method to install boolrule, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for boolrule can be downloaded from the Github repo [https://github.com/tailsdotcom/boolrule].

You can either clone the public repository:

$ git clone git://github.com/tailsdotcom/boolrule

Or download the tarball [https://github.com/tailsdotcom/boolrule/tarball/master]:

$ curl -OL https://github.com/tailsdotcom/boolrule/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

The entirety of boolrule’s functionality is encapsulated in the BoolRule
class.

Getting started

The simplest use case is evaluating simple, self-contained expressions:

from boolrule import BoolRule

expression = '5 > 10'
rule = BoolRule(expression)
rule.test() # False

However, the real power of boolrule comes when the expression makes use of
values from the context dict passed to the test() method:

from boolrule import BoolRule

expression = 'content.is_published = true and user.level in content.allowed_levels'
rule = BoolRule(expression)

context = {
 'user': {
 'level': 'super',
 },
 'content': {
 "is_published": True,
 'allowed_levels': [
 'admin',
 'super'
]
 },
}

if rule.test(context):
 # Let the user see the content
 pass

Lazy compilation

By default the expression is compiled when you create a new BoolRule
object. If you’re instantiating a lot of BoolRule instances but are only
likely to call test on a few of them (because you’re looking for just the
first match, for example) then you can use the optional lazy` argument in
the call to BoolRule` to defer compilation until the first call to
test():

rules = [
 BoolRule(expression, lazy=True)
 for expression in expressions
]

if any(r in rules.test(context)):
 # Do a thing
 pass

boolrule API

BoolRule

	
class boolrule.BoolRule(query, lazy=False)

	Represents a boolean expression and provides a test method to evaluate
the expression and determine its truthiness.

	Parameters

	
	query – A string containing the query to be evaluated

	lazy – If True, parse the query the first time it’s tested rather
than immediately. This can help with performance if you
instantiate a lot of rules and only end up evaluating a
small handful.

	
test(context=None)

	Test the expression against the given context and return the result.

	Parameters

	context – A dict context to evaluate the expression against.

	Returns

	True if the expression succesfully evaluated against the
context, or False otherwise.

Exceptions

	
class boolrule.MissingVariableException

	Raised when an expression contains a property path that’s not supplied in
the context.

	
class boolrule.UnknownOperatorException

	Raised when an expression uses an unknown operator.

This should never be thrown since the operator won’t be correctly parsed as
a token by pyparsing, but it’s useful to have this hanging around for when
additional operators are being added.

Writing boolean expressions

The grammar supported by boolrule is fairly simple but powerful.

Whitespace

Except within string literals, all whitespace is ignored.

Literals

Numeric literls are written as bare numbers. Floating point and exponent-based
numbers are supported:

10 # int
-10 # int with optional sign
10.5 # float (without optional sign)
10.5E-3 # equivalent to 0.0105

String literls can be single or double quoted:

"Hello, world"
'boolrule rulez"

Boolean literals are the bare values true and false

None type is the bare value none

Property paths

In order to reference values from the context passed into the test()
method you specify the path to the property as a dot-separated identifier:

foo
foo.bar
foo.bar.baz

At evaluation time, these will map to either object attributes or dict keys in
that order.

Basic comparison operators

	Operator

	Description

	Example

	=, ==, eq

	Equality

	foo == 5

	!=, !==, ne

	Inequality

	bar != 5

	>, gt

	Greater than

	foo > 5

	>=, gte

	Greater than or equal to

	foo >= 5

	<, lt

	Less than

	foo < 5

	<=, lte

	Less than or equal to

	foo <= 5

	is

	Identity

	foo is True

	isnot

	Inverse identity

	foobar isnot True

Logical operators

	Operator

	Description

	Example

	and

	Logical and

	foo == 5 and bar < 10

	oe

	Logical or

	bar == 5 or bar < 10

Membership operators

	Operator

	Description

	Example

	in

	Is a member of

	foo in ("a","b","c")

	notin

	Is not a member of

	foo not in ("a","b")

Nested expressions

You can use parentheses to next expressions:

foo > 5 and (10 < bar or bar > 20)

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/tailsdotcom/boolrule/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

boolrule could always use more documentation, whether as part of the
official boolrule docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/tailsdotcom/boolrule/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up boolrule for local development.

	Fork the boolrule repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/boolrule.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv boolrule
$ cd boolrule/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 boolrule tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check
https://travis-ci.org/tailsdotcom/boolrule/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_boolrule

Credits

Development Lead

	Steve Webster <spjwebster@gmail.com>

Contributors

None yet. Why not be the first?

History

0.2.0 (2016-10-27)

	Fixed error caused by refactor from internal codebase that was preventing deep context level values from being
referenced in a substitution value

0.1.2 (2016-09-30)

	Improved documentation

0.1.1 (2016-09-30)

	Made context optional

	Improved documentation

0.1.0 (2016-09-30)

	First release on PyPI.

Index

 B
 | M
 | T
 | U

B

 	
 	BoolRule (class in boolrule)

M

 	
 	MissingVariableException (class in boolrule)

T

 	
 	test() (boolrule.BoolRule method)

U

 	
 	UnknownOperatorException (class in boolrule)

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to boolrule’s documentation

 		
 boolrule

 		
 Features

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Getting started

 		
 Lazy compilation

 		
 boolrule API

 		
 BoolRule

 		
 Exceptions

 		
 Writing boolean expressions

 		
 Whitespace

 		
 Literals

 		
 Property paths

 		
 Basic comparison operators

 		
 Logical operators

 		
 Membership operators

 		
 Nested expressions

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.2.0 (2016-10-27)

 		
 0.1.2 (2016-09-30)

 		
 0.1.1 (2016-09-30)

 		
 0.1.0 (2016-09-30)

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

